
lexi_tutorial

January 28, 2024

1 LEXI Tutorial
Generated by pandoc from lexi-tutorial.ipynb.

Author: Ramiz Qudsi

Latest Update Date: {date_time}

This Notebook will walk you through the process of using the LEXI code with the final goal of
producing and saving x-ray data from LEXI spacecraft.

LEXI, in this context, is a package developed in Python to ingest the data from the LEXI spacecraft
and produce x-ray data images in RA-DEC coordinate system.

1.1 LEXI package description
LEXI package has the following functions:

• get_spc_prams

• get_exposure_maps

• get_sky_backgrounds

• get_lexi_images

Details of each function are described in the following sections.

1.1.1 get_spc_prams

• get_spc_prams: to get the spacecraft’s ephemeris data. It takes the following inputs:
• Required:

– t_range: a list of two elements, the start and end time of the observation in UTC. The
format of the time can be any of the following:

– string: YYYY-MM-DD HH:MM:SS
– float: Unix time or the number of seconds since 1970-01-01 00:00:00 UTC
– datetime object: datetime.datetime(YYYY, MM, DD, HH, MM, SS)
– Optional:
– None The function returns the interpolated ephemeris data in a pandas dataframe.

Output:
– A pandas dataframe with the following columns:
– epoch_utc: Time in UTC
– ra: Right Ascension in degrees

1

https://pandoc.org/
lexi_tutorial.ipynb
https://www.qudsiramiz.space/
https://sites.bu.edu/lexi/

– dec: Declination in degrees
– roll: Roll angle in degrees The interpolation is done internally on the ephemeris data

using the t_step parameter. t_step is the time step in seconds at which the user desires
to have look-direction computed. The default value is set to 5 seconds and is sufficient
for most of the cases. The user can change it to a different value if needed.

1.1.2 get_spc_prams

• get_exposure_maps: The function to compute the exposure map for any given time interval.
It takes the following inputs:

• Required:
– t_range: a list of two elements, the start and end time of the observation in UTC. The

format of the time can be any of the following:
– string: YYYY-MM-DD HH:MM:SS
– float: Unix time or the number of seconds since 1970-01-01 00:00:00 UTC
– datetime object: datetime.datetime(YYYY, MM, DD, HH, MM, SS) Using the t_range

parameter, the function will call get_spc_prams internally to get the ephemeris data.
• Optional:

– ra_range: a list of two elements, the start and end RA of over which the user want the
exposure maps to be computed. If not provided, the function computes the exposure
map over the entire range of possible RA values (0 to 360 degrees).

– dec_range: a list of two elements, the start and end Dec of over which the user want
the exposure maps to be computed. If not provided, the function computes the exposure
map over the entire range of possible Dec values (-90 to 90 degrees).

– ra_res: the resolution of the RA bins in degrees. The default value is set to 0.1 degrees.
The user can change it to a different value if needed.

– dec_res: the resolution of the Dec bins in degrees. The default value is set to 0.1
degrees.

– nbins: The number of bins to be used while computing the exposure map. It can be a
single integer or a list of two integers. If a single integer is provided, the function will use
the same number of bins for both RA and Dec. If a list of two integers is provided, the
first element will be used for RA and the second element will be used for Dec. Note that
if ra_res and dec_res are provided, the function will use the number of bins computed
from the resolution values. However, if either of them is not provided, the function will
use the number of bins provided by the user.

– t_step: time step in seconds at which the user desires to have look-direction computed.
The default value is set to 5 seconds and is sufficient for most of the cases. The user can
change it to a different value if needed.

– t_integrate: the integration time in seconds. This the length of time for wwhich each
exposure map is computed. The default value is set to 600 seconds (10 minutes). If it is
not provided by the user, the function will assume the time difference between the start
and end time of the observation as the integration time. For example, if the provided
t_range is ['2020-01-01 00:00:00', '2020-01-01 02:10:00'], the function will as-
sume the integration time to be 7800 seconds (2 hours and 10 minutes). However, if
the user provides a different integration_time, let’s say 600 seconds, the function will
compute the exposure maps for 10 minutes each, there by producing 22 exposure maps.

– save_exposure_maps: a boolean value to indicate whether the user wants to save
the exposure maps as a PNG files. The default value is set to False. If the user

2

wants to save the exposure maps, the function will save them in the a folder named
figures/exposure_maps/ in the current working directory. The function will also
create a .npy file containing the the in a folder named data/exposure_maps/
in the current working directory. The name of the .npy file will be
lexi_exposure_maps_Tstart_[YYYYMMDD_HHMMSS]_Tstop_[YYYYMMDD_HHMMSS]_RAstart_[RAstart]_RAstop_[RAstop]_Decstart_[Decstart]_Decstop_[Decstop]_RAres_[RAres]_Decres_[Decres]_tint_[tint].npy.
In the namefile, everything witihn the square brackets will be replaced by the actual
values as computed by the function. For example, if the user provides the following
inputs:

– t_range: ['2020-01-01 00:00:00', '2020-01-01 02:10:00']
– ra_range: [0, 360]
– dec_range: [-90, 90]
– ra_res: 0.1
– dec_res: 0.1
– nbins: [3600, 1800]
– t_step: 5
– t_integrate: 600 The function will save the exposure maps as

lexi_exposure_maps_Tstart_20200101_000000_Tstop_20200101_021000_RAstart_0_RAstop_360_Decstart_-90_Decstop_90_RAres_0.1_Decres_0.1_tint_600.npy
in the data/exposure_maps/ folder and the PNG files in the figures/exposure_maps/
folder.

The function returns the following: - exposure_maps: a numpy array containing the exposure
maps. The shape of the array is (nbins_time, nbins_dec, nbins_ra). The nbins_time is the
number of exposure maps computed for the given t_range and t_integrate. The nbins_dec and
nbins_ra are the number of bins computed for the given dec_res and ra_res respectively. The
unit of the exposure maps is seconds for each bin in the array. - ra_arr: a numpy array containing
the RA values for the exposure maps. The shape of the array is (nbins_ra,). - dec_arr: a numpy
array containing the Dec values for the exposure maps. The shape of the array is (nbins_dec,). -
Images in the PNG format saved in the figures/exposure_maps/ folder if save_exposure_maps
is set to True.

1.1.3 get_sky_backgrounds

• get_sky_backgrounds: The function to compute the sky backgrounds for any given time
interval using the ROSAT data. It takes the following inputs:

• Required:
– t_range: a list of two elements, the start and end time of the observation in UTC. The

format of the time can be any of the following:
– string: YYYY-MM-DD HH:MM:SS
– float: Unix time or the number of seconds since 1970-01-01 00:00:00 UTC
– datetime object: datetime.datetime(YYYY, MM, DD, HH, MM, SS) Using the t_range

parameter, the function will call get_spc_prams internally to get the ephemeris data.
The function will also call get_exposure_maps internally to get the exposure maps.

• Optional:
– ra_range: a list of two elements, the start and end RA of over which the user want

the sky backgrounds to be computed. If not provided, the function computes the sky
backgrounds over the entire range of possible RA values (0 to 360 degrees).

– dec_range: a list of two elements, the start and end Dec of over which the user want
the sky backgrounds to be computed. If not provided, the function computes the sky

3

backgrounds over the entire range of possible Dec values (-90 to 90 degrees).
– ra_res: the resolution of the RA bins in degrees. The default value is set to 0.1 degrees.

The user can change it to a different value if needed.
– dec_res: the resolution of the Dec bins in degrees. The default value is set to 0.1

degrees.
– nbins: The number of bins to be used while computing the sky backgrounds. It can be a

single integer or a list of two integers. If a single integer is provided, the function will use
the same number of bins for both RA and Dec. If a list of two integers is provided, the
first element will be used for RA and the second element will be used for Dec. Note that
if ra_res and dec_res are provided, the function will use the number of bins computed
from the resolution values. However, if either of them is not provided, the function will
use the number of bins provided by the user.

– t_step: time step in seconds at which the user desires to have look-direction computed.
The default value is set to 5 seconds and is sufficient for most of the cases. The user can
change it to a different value if needed.

– t_integrate: the integration time in seconds. This the length of time for wwhich each
exposure map is computed. The default value is set to 600 seconds (10 minutes). If it is
not provided by the user, the function will assume the time difference between the start
and end time of the observation as the integration time. For example, if the provided
t_range is ['2020-01-01 00:00:00', '2020-01-01 02:10:00'], the function will as-
sume the integration time to be 7800 seconds (2 hours and 10 minutes). However, if
the user provides a different integration_time, let’s say 600 seconds, the function will
compute the exposure maps for 10 minutes each, there by producing 22 sky background
images.

– save_sky_backgrounds: a boolean value to indicate whether the user wants to save the
sky background images as a PNG files. The default value is set to False. If the user
wants to save the sky background images, the function will save them in the a folder
named figures/sky_backgrounds/ in the current working directory.

The function returns the following: - sky_backgrounds: a numpy array containing the sky back-
grounds. The shape of the array is (nbins_time, nbins_dec, nbins_ra). The nbins_time is
the number of sky background images computed for the given t_range and t_integrate. The
nbins_dec and nbins_ra are the number of bins computed for the given dec_res and ra_res re-
spectively. The unit of the sky backgrounds is counts for each bin in the array. - ra_arr: a numpy
array containing the RA values for the sky backgrounds. The shape of the array is (nbins_ra,).
- dec_arr: a numpy array containing the Dec values for the sky backgrounds. The shape of the
array is (nbins_dec,). - Images in the PNG format saved in the figures/sky_backgrounds/
folder if save_sky_backgrounds is set to True.

1.1.4 get_lexi_images

• get_lexi_images: The function to compute the background corrected or uncorrected x-ray
image from LEXI data. The function takes the following inputs:

• Required:
– t_range: a list of two elements, the start and end time of the observation in UTC. The

format of the time can be any of the following:
– string: YYYY-MM-DD HH:MM:SS
– float: Unix time or the number of seconds since 1970-01-01 00:00:00 UTC

4

– datetime object: datetime.datetime(YYYY, MM, DD, HH, MM, SS) Using the t_range
parameter, the function will call get_spc_prams internally to get the ephemeris data.
The function will also call get_exposure_maps internally to get the exposure maps. The
function will also call get_sky_backgrounds internally to get the sky backgrounds.

• Optional:
– background_correction_on: a boolean value to indicate whether the user wants to

apply the background correction to the x-ray image. The default value is set to True.
If the user wants to apply the background correction, the function will subtract the sky
backgrounds from the x-ray image.

– ra_range: a list of two elements, the start and end RA of over which the user want
the sky backgrounds to be computed. If not provided, the function computes the sky
backgrounds over the entire range of possible RA values (0 to 360 degrees).

– dec_range: a list of two elements, the start and end Dec of over which the user want
the sky backgrounds to be computed. If not provided, the function computes the sky
backgrounds over the entire range of possible Dec values (-90 to 90 degrees).

– ra_res: the resolution of the RA bins in degrees. The default value is set to 0.1 degrees.
The user can change it to a different value if needed.

– dec_res: the resolution of the Dec bins in degrees. The default value is set to 0.1
degrees.

– nbins: The number of bins to be used while computing the sky backgrounds. It can be a
single integer or a list of two integers. If a single integer is provided, the function will use
the same number of bins for both RA and Dec. If a list of two integers is provided, the
first element will be used for RA and the second element will be used for Dec. Note that
if ra_res and dec_res are provided, the function will use the number of bins computed
from the resolution values. However, if either of them is not provided, the function will
use the number of bins provided by the user.

– t_step: time step in seconds at which the user desires to have look-direction computed.
The default value is set to 5 seconds and is sufficient for most of the cases. The user can
change it to a different value if needed.

– t_integrate: the integration time in seconds. This the length of time for wwhich each
exposure map is computed. The default value is set to 600 seconds (10 minutes). If it is
not provided by the user, the function will assume the time difference between the start
and end time of the observation as the integration time. For example, if the provided
t_range is ['2020-01-01 00:00:00', '2020-01-01 02:10:00'], the function will as-
sume the integration time to be 7800 seconds (2 hours and 10 minutes). However, if
the user provides a different integration_time, let’s say 600 seconds, the function will
compute the exposure maps for 10 minutes each, there by producing 22 sky background
images.

The function returns the following: - lexi_images: a numpy array containing the x-ray images.
The shape of the array is (nbins_time, nbins_dec, nbins_ra). The nbins_time is the number
of x-ray images computed for the given t_range and t_integrate. The nbins_dec and nbins_ra
are the number of bins computed for the given dec_res and ra_res respectively. The unit of the
x-ray images is counts for each bin in the array. - ra_arr: a numpy array containing the RA
values for the x-ray images. The shape of the array is (nbins_ra,). - dec_arr: a numpy array
containing the Dec values for the x-ray images. The shape of the array is (nbins_dec,). - Images
in the PNG format saved in the figures/lexi_images/ folder.

5

2 Using the LEXI Code
2.0.1 Import the LEXI package from the lexi folder

NOTE: The following cell is only needed if you are running this notebook from the examples
folder. This is beccause the code still uses sample_lexi_pointing_ephem_edited.csv and
sample_xray_background.csv files from the to get the ephemeries and the x-ray background
data.

[3]: # Import LEXI
from lexi.lexi import LEXI

[4]: # Check if lexi was imported correctly by printing the main LEXI docstring
print(LEXI.__doc__)

A LEXI class for generating LEXI images based in either user input or
default parameters.

Attributes:
LEXI_FOV: float

The LEXI field of view in degrees. It is a fixed value of 9.1
degrees.

CDA_LINK: str
The link to the CDAweb website, from which ephemeris data are

pulled.
save_df: bool

If True, save the dataframe to a file.
filename: str

Filename to save df to.
filetype: str

Filetype to save df to. Options: 'csv','pkl'
interp_method: str

Interpolation method used when upsampling/resampling ephemeris data,
ROSAT data. Options:

'linear', 'index', 'values', 'pad'. See pandas.DataFrame.interpolate
documentation for

more information. Default is 'index'.
background_correction_on: bool

Toggle background correction. Default is True. If False, background
correction is not

applied to the LEXI images. If True, background correction is
applied to the final LEXI

images.
t_range: list

Time range to consider. [start time, end time]. Times can be
expressed in the following

formats:
1. A string in the format 'YYYY-MM-DDTHH:MM:SS' (e.g.

6

'2022-01-01T00:00:00')
2. A datetime object
3. A float in the format of a UNIX timestamp (e.g. 1640995200.0)
This time range defines the time range of the ephemeris data and

the time range of
the LEXI data.

Note that endpoints are inclusive (the end time is a closed
interval); this is because

the time range slicing is done with pandas, and label slicing in
pandas is inclusive.

t_step: float
Time step in seconds for time resolution of the look direction

datum.
t_integrate: float

Integration time in seconds for lexi histograms and exposure maps.
This is the time that

we integrate over to create the lexi histograms and exposure maps.
Default is 600

seconds.
ra_range: list

RA (Right Ascension) range to plot, in degrees. [start RA, end RA].
Default is [0.0,

360.0].
dec_range: list

DEC (Declination) range to plot, in degrees. [start DEC, end DEC].
Default is [-90.0,

90.0].
ra_res: float

RA resolution to plot at, in degrees. Default is 0.1.
dec_res: float

DEC resolution to plot at, in degrees. Default is 0.1.
nbins: int

Alternative to ra_res/dec_res: nbins defines the number of bins in
the RA and DEC

directions. Either a scalar integer or [ra_nbins, dec_nbins]. If
both nbins and

ra_res/dec_res are specified, nbins will be used and ra_res/dec_res
will be ignored.

save_exposure_maps: bool
If True, save the exposure maps to a file of given filename and

filetype.
save_sky_backgrounds: bool

If True, save the sky background to a file of given filename and
filetype.

save_lexi_images: bool
If True, save the background corrected image to a file of given

filename and filetype.

7

Methods:
get_spc_prams:

Gets spacecraft ephemeris data for the given t_range by downloading
the appropriate

file(s) from the NASA CDAweb website.
vignette:

Function to calculate the vignetting factor for a given distance
from boresight.

get_exposure_maps:
Returns an array of exposure maps, made according to the ephemeris

data and the specified
time/integration/resolution parameters.
Shape: num-images * ra-pixels * dec-pixels, where num-images depends

on t_range and
t_integrate, ra-pixels depends on ra_range and ra_res, and dec-

pixels depends on
dec_range and dec_res.

get_sky_backgrounds:
Returns an array of ROSAT sky background images, corrected for LEXI

exposure time.
Shape: num-images * ra-pixels * dec-pixels, where num-images depends

on t_range and
t_integrate, ra-pixels depends on ra_range and ra_res, and dec-

pixels depends on
dec_range and dec_res.

get_lexi_images:
Returns an array of LEXI science histograms.
Shape: num-images * ra-pixels * dec-pixels,
where num-images depends on t_range and t_integrate, ra-pixels

depends on ra_range and
ra_res, and dec-pixels depends on dec_range and dec_res.

array_to_image:
Convert a 2D array from get_exposure_maps or get_lexi_images to an

image.

[5]: # Set up the lexi instance using a dictionary of parameters and values as␣
↪follows:

Refer to the LEXI docstring for a description of each parameter

lexi = LEXI(
{

"t_range": [
"2024-07-08T21:43:41",
"2024-07-08T21:47:48",

],
"ra_range": [290, 360],

8

"dec_range": [290, 360],
"ra_res": 4,
"dec_res": 3,
"background_correction_on": False,
"save_exposure_maps": True,
"save_sky_backgrounds": True,
"save_lexi_images": True,

}
)

[6]: # Get space params
df_space_params = lexi.get_spc_prams()

/home/vetinari/Desktop/git/Lexi-Bu/lexi/lexi/lexi.py:228: FutureWarning:
DataFrame.interpolate with object dtype is deprecated and will raise in a future
version. Call obj.infer_objects(copy=False) before interpolating instead.

dfinterp = dfresamp.interpolate(method=self.interp_method)

[7]: # Look at the space params
df_space_params.head()

[7]: epoch_utc epoch_mjd earth_ra \
epoch_utc
2024-07-08 21:44:00 Jul 08 2024 21:44:00.000000000 60499.905980 324.955849
2024-07-08 21:44:05 NaN 60499.906038 324.956541
2024-07-08 21:44:10 NaN 60499.906097 324.957233
2024-07-08 21:44:15 NaN 60499.906155 324.957924
2024-07-08 21:44:20 NaN 60499.906213 324.958616

earth_dec sun_ra sun_dec sco_ra sco_dec \
epoch_utc
2024-07-08 21:44:00 -18.047999 108.192588 22.372788 244.982213 -15.640577
2024-07-08 21:44:05 -18.047728 108.192646 22.372781 244.982213 -15.640577
2024-07-08 21:44:10 -18.047457 108.192703 22.372775 244.982213 -15.640577
2024-07-08 21:44:15 -18.047186 108.192761 22.372768 244.982213 -15.640577
2024-07-08 21:44:20 -18.046915 108.192819 22.372762 244.982213 -15.640577

mp_az mp_el mp_ra mp_dec
epoch_utc
2024-07-08 21:44:00 248.464172 37.481432 335.293995 -14.326040
2024-07-08 21:44:05 248.464264 37.481413 335.294663 -14.325745
2024-07-08 21:44:10 248.464357 37.481394 335.295330 -14.325450
2024-07-08 21:44:15 248.464449 37.481374 335.295998 -14.325155
2024-07-08 21:44:20 248.464542 37.481355 335.296665 -14.324860

[8]: # Print a list of all the keys in the space params
df_space_params.keys()

9

[8]: Index(['epoch_utc', 'epoch_mjd', 'earth_ra', 'earth_dec', 'sun_ra', 'sun_dec',
'sco_ra', 'sco_dec', 'mp_az', 'mp_el', 'mp_ra', 'mp_dec'],
dtype='object')

[9]: # Get exposure maps
expmaps, ra_arr, dec_arr = lexi.get_exposure_maps()

/home/vetinari/Desktop/git/Lexi-Bu/lexi/lexi/lexi.py:228: FutureWarning:
DataFrame.interpolate with object dtype is deprecated and will raise in a future
version. Call obj.infer_objects(copy=False) before interpolating instead.

dfinterp = dfresamp.interpolate(method=self.interp_method)

Exposure map loaded from file /home/vetinari/Desktop/git/Lexi-Bu/lexi/data

/exposure_maps/lexi_exposure_map_Tstart_20240708_214341_Tstop_20240708_214748_RA

start_290_RAstop_360_RAres_4_DECstart_290_DECstop_360_DECres_3_Tint_247.npy

Saving exposure maps as images
Saved figure to figures/exposure_maps/exposure_map_0.png

10

[10]: # Get sky backgrounds
skybgs, ra_arr, dec_arr = lexi.get_sky_backgrounds()

/home/vetinari/Desktop/git/Lexi-Bu/lexi/lexi/lexi.py:228: FutureWarning:
DataFrame.interpolate with object dtype is deprecated and will raise in a future
version. Call obj.infer_objects(copy=False) before interpolating instead.

dfinterp = dfresamp.interpolate(method=self.interp_method)

Exposure map loaded from file /home/vetinari/Desktop/git/Lexi-Bu/lexi/data

/exposure_maps/lexi_exposure_map_Tstart_20240708_214341_Tstop_20240708_214748_RA

start_290_RAstop_360_RAres_4_DECstart_290_DECstop_360_DECres_3_Tint_247.npy

Saving exposure maps as images
Saved figure to figures/exposure_maps/exposure_map_0.png

11

Saved figure to figures/sky_background/sky_background_0.png

12

[11]: # Get background corrected images
lexi_image, ra_arr, dec_arr = lexi.get_lexi_images()

Extrema: RA min -1102.979736328125, RA max 331.99212646484375, DEC min
-8373.873046875, DEC max 208.826904296875

/home/vetinari/Desktop/git/Lexi-Bu/lexi/lexi/lexi.py:228: FutureWarning:
DataFrame.interpolate with object dtype is deprecated and will raise in a future
version. Call obj.infer_objects(copy=False) before interpolating instead.

dfinterp = dfresamp.interpolate(method=self.interp_method)

Exposure map loaded from file /home/vetinari/Desktop/git/Lexi-Bu/lexi/data

/exposure_maps/lexi_exposure_map_Tstart_20240708_214341_Tstop_20240708_214748_RA

start_290_RAstop_360_RAres_4_DECstart_290_DECstop_360_DECres_3_Tint_247.npy

Saving exposure maps as images

13

Saved figure to figures/exposure_maps/exposure_map_0.png

Saved figure to figures/sky_background/sky_background_0.png

14

Saved figure to figures/lexi_images/lexi_image_0.png

15

[12]: lexi_image.shape

[12]: (18, 24)

[13]: print(ra_arr.shape, dec_arr.shape)

(18,) (24,)

[]:

16

	LEXI Tutorial
	LEXI package description
	get_spc_prams
	get_spc_prams
	get_sky_backgrounds
	get_lexi_images

	Using the LEXI Code
	Import the LEXI package from the lexi folder

